
RS232C DTE-to-DCE Flow Control

Used when one device processes data significantly faster than the other (eg. mainframe to teletype). Assumes that DTE can always receive data as fast as DCE sends it.

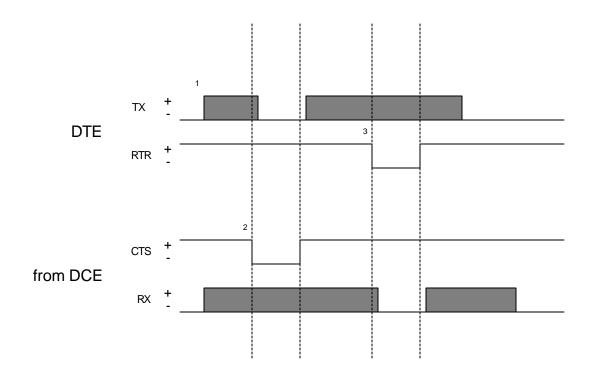
RS-232C: RTS/CTS

Windows CE: RTS_CONTROL_TOGGLE

Description of Activity:

- 1. DTE data availalable. Sets RTS high.
- 2. DCE responds that it is ready. Sets CTS high.
- 3. DTE begins transmitting data.
- 4. DCE can request that DTE stop sending data (eg. buffers overflowing)
- 5. When DTE transmit buffer is empty, DTE lowers its RTS line.
- 6. DCE resets the CTS line in preparation for next transmission.

Notes:


- All signals named with respect to DTE

RS232E Bi-directional Flow Control

Peer-to-peer and high-speed serial communications. Used in most modern serial communications systems.

RS-232E: RTR/CTS

Windows CE: RTS_CONTROL_HANDSHAKE

Description of Activity:

- 1. Both devices begin sending data to each other
- 2. DCE raises CTS to request a halt in data transmission from DTE; lowers CTS to resume
- 3. DTE raises RTR to request a halt in data transmission from DCE; lowers RTR to resume

Notes:

- A. All signals referenced with respect to DTE
- B. DCE could be a second DTE device