
Copyright 2002 Page 1 6/3/2002
Applied Data Systems, Inc.

Benchmarking Real-time Determinism in Windows CE

Chris Tacke, eMVP
CE Product Manager, Applied Data Systems

Lawrence Ricci, eMVP

Business Development Manager, Applied Data Systems

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 2 6/3/2002
Applied Data Systems, Inc.

Abstract
The real time or deterministic performance of Windows CE has been extensively
investigated for applications in industrial control systems. With the release of CE.NET,
engineers are asking if the new OS is more or less agile than its widely used
predecessors, 2.12, and 3.0. This white paper first establishes the real- time performance
of CE 3.0 on the ‘industry standard’ StrongARM™ platform, and then compares it in
detail to CE.NET, and its predecessor CE 2.12

Real-Time performance was tested by using a standard function generator to create a
hardware interrup t on the device. The device then starts an IST which immediately sets a
GPIO line high and sets a Windows event. Further, an application thread receives that
event and sets another GPIO line high. We tested and are reporting several timing
differentials with reference to the generated hardware interrupt and the time at which the
output GPIO lines actually went high.

These are ‘hard tests’ for ‘hard real time’. There are no measurements made ‘internal’ to
the hardware/software platform, and there are no semantic games on the nature of hard
and soft real time. The results, measured with high speed, high precision instruments,
were surprising, suggesting that specifications for CE real time performance were too
conservative. CE as an RTOS performs far better then generally discussed.

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 3 6/3/2002
Applied Data Systems, Inc.

Introduction
The tests we ran are simple and direct. We send a signal to a StrongARM-based
controller running Windows CE of various versions, and measure how long it takes to
respond. The “latency time” and “jitter time” of this response are the quantified
measures of determinism

As a separate test, we follow the methodology of Dupre and Barcos published at
http://www.isa.org/~pmcd/acs/brtd.html. This test does not measure latency and jitter,
but does measure ‘saturation’ which we define as the repetitive interrupt loading where
the system becomes saturated and its response becomes non-deterministic.

Finally, to more accurately reflect the environment of a real device in actual operation,
we introduce a load in the form of the “Polygons” program. The Latency, Jitter and
Saturation are measured under load.

We like these tests because of their reliance on ‘full loop’ testing- beginning with the
stimulus of a system input and measuring the system output. The tests make no
assumptions about the ‘internals’ of the device. The tests make no references to
‘interrupt latencies’ or ‘context switch times’; it is a basic measurement of the full
system- both hardware and software performance.

The reader should note how this test might map to the actual limiting case for real time
performance of the OS in a target application.

On the one hand, the ‘control logic’ in this test is very low overhead, simple C++
Programs that read a processor-IO input on interrupt or sense a windows event and set an
output. Also, a real controller would have additional latencies associated with the
hardware multiplexing to a ‘real world’ process I/O subsystem. Likewise, this test is
independent of networking and calculation loads, and it is independent of the overhead
associated with a soft-control executive. It should be noted that all these loads would
typically be independent of OS used, so we remain focused, as intended, on raw OS
performance.

On the other hand, the system tested has not been optimized for real- time performance
and carries the full “Max ALL” CE build, with all CE utilities installed. Also, the
StrongARM provides the additional capability of continually providing the graphics for a
VGA flat panel display, highlighting its performance even further.

Test Equipment
Our test setup follows that of Dupre and Barcos, with the addition of a high-speed
memory scope to let us measure latency, jitter and thread run time.

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 4 6/3/2002
Applied Data Systems, Inc.

Figure 1- Initial Test Setup

In our setup the following equipment was used

Control System ADS Graphic Master Development System
Signal Generator Agilent 33210A
Counters A, B Systron Donner 6150
Oscilloscope: Tektronix TDS 224

Figure 2 Photograph of test setup

Code may be hardware independent, but embedded systems programmers seldom are

Counter A

50234
Counter B

00000

Signal
Generator

Control
System

Memory
Scope

ISR_Test:
-Wait
-On Interrupt, set Output
-when you can, set it back
APP_Test:
-Wait
-On Windows Event, set
Output
-when you can, set it back

Count Up
Count
Down

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 5 6/3/2002
Applied Data Systems, Inc.

Graphics Master Test Platform
The Graphic Master is a StrongARM-based single board embedded computer furnished
by Applied Data Systems, Inc. (ADS), in an ‘application ready’ format (all device
drivers, BSP, full suite of CE peripherals were loaded). The system is SA 1110/1111
running at 206 MHz, with 32 Meg Flash and 32 Meg RAM. The system includes a high-
speed 8 bit micro-controller often used as a real time front-end I/O processor, but this was
not used in the tests. It also includes Ethernet, 7 serial ports, a CAN bus, PCMCIA and
Compact Flash. General purpose I/O lines were used for input and output.

The CE Builds on the Graphics Master used for this test were
 CE 2.12
 CE 3.0
 CE.NET
In all cases, this is the ‘standard’ out of the box configuration with fully graphics,
desktop, control panels, networks, browsers etc. While an optimized build for
performance was available by ADS, it was decided to utilize a non-optimized build for
this analysis to understand a “worst case” scenario for the Graphics Master.

The interrupt line we used for the test is most normally used for a ‘power on/power off’
pushbutton to signal transition in and out of power saving ‘sleep’ mode. In this service, it
is useful to have some small filters on the board to eliminate contact bounce from the
typical membrane pushbutton. Once we started running the test, it became clear that the
OS real time performance on the Graphics Master was much quicker than we expected,
and was occurring at time intervals inside the ‘contact bounce’ of a button, so we
removed the filters from the board. It should be noted that this type of selective
depopulation is a routine operation for ADS systems as purchased by OEM’s.

More detailed specification of the Graphics Master can be found here:
http://www.applieddata.net/products_master.asp

To help the reader understand the general performance level of this system, we
benchmark using “Polygons” for each OS, and compare these to other systems. This is
not ‘apples to apples’ comparison since IPAQ is QVGA and therefore has only ¼ the
number of pixels to update, but it does provide a general indication of the efficiency of
the OS BSP. For comparison, we also ran Polygons on a slightly different version of
Graphics Master running 3.0 with a QVGA display, and a desktop Pentium running
CEPC

Figure 3 Polygon Benchmarks
Polygons/Second CE 2.12 CE 3.0 CE.NET

Graphics Master (VGA 8bit) 170 751 537
Graphics Master Variation (QVGA 8bit) 980

3630 iPaq (QVGA 16bit) 260

As of this date (March 2002) this is an early release of the CE.NET BSP for this system;
some improvement is expected over the next few months.

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 6 6/3/2002
Applied Data Systems, Inc.

The particular ‘control logic’ for this series of tests was of two types. One routine
(ISR_TEST) was a few lines of code linked directly to the ISR. When the interrupt
occurred, the routine ran with the ISR and set an output on the Graphics Master. This
would be the type of code used for the most demanding real-time applications and runs at
‘interrupt priority’. A typical application for this type of real-time code would be
something that must happen very quickly, fo r example the register store and shutdown
required to put a system into sleep as a result of a power failure, or an application with a
high-speed ‘stream’ of interrupts, for example a pulse encoder.

The second routine APP_TEST was analogous to typical ‘control packages’ which
communicate only with the standard OS API and messaging system. For this routine, the
ISR sets a Windows™ event. When the event is recognized by the APP_TEST routine it
runs, turns a different output on, and they shuts it off as soon as it finishes running. This
routine ran quite well in our tests and requires no knowledge of the driver structure to
implement, so is the better choice for most applications.

Code for APP_TEST test is as shown if Figure 4. It is identical code for all versions of
the OS, written in C++.

Figure 4 APP_TEST

#define LED_ON 1
#define LED_OFF 0
#define ITERATIONS 1000000

DWORD EventThread(LPVOID threadParams);

HANDLE hPort = INVALID_HANDLE_VALUE;
HANDLE hPwrOffEvent = INVALID_HANDLE_VALUE;
HANDLE hThreadEvent = INVALID_HANDLE_VALUE;
TCHAR szEvent[] = _T("PWROFF");
TCHAR szThreadEvent[] = _T("DONE");
TCHAR szLEDName[] = _T("LED3:");

int WINAPI WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPTSTR lpCmdLine,
 int nCmdShow)
{
 HANDLE hThread;

 hThreadEvent = CreateEvent(NULL, FALSE, FALSE, szThreadEvent);
 hThread = CreateThread(NULL, NULL, EventThread, NULL, 0, NULL);

#if (_WIN32_WCE < 300)
 SetThreadPriority(hThread, THREAD_PRIORITY_TIME_CRITICAL);
#else
 CeSetThreadPriority(hThread, 0);
 CeSetThreadQuantum(hThread, 0);
#endif

 WaitForSingleObject(hThreadEvent, INFINITE);

 return 0;
}

DWORD EventThread(LPVOID threadParams)
{
 BYTE ledStatus;
 DWORD dwSize;

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 7 6/3/2002
Applied Data Systems, Inc.

 DWORD dwRet;

 // open LED
 hPort = CreateFile(szLEDName, GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0,
 NULL);

 // check for success
 if(hPort == INVALID_HANDLE_VALUE)
 {
 RETAILMSG(TRUE, (_T("\r\nFailed to open LED: %d\r\n"),
 GetLastError()));
 return -1;
 }

 // ensure LED is off
 ledStatus = LED_OFF;
 WriteFile(hPort, &ledStatus, 1, &dwSize, NULL);

 // create event
 hPwrOffEvent = CreateEvent(NULL, FALSE, FALSE, szEvent);

 // check for success
 if(hPwrOffEvent == INVALID_HANDLE_VALUE)
 {
 RETAILMSG(TRUE,(_T("Failed to create event: %d\r\n"),
 GetLastError()));
 return -1;
 }

 for(int i = 0 ; i < ITERATIONS ; i++)
 {
 // wait for interrupt-driven event
 dwRet = WaitForSingleObject(hPwrOffEvent, INFINITE);

 // turn on LED
 ledStatus = LED_ON;
 WriteFile(hPort, &ledStatus, 1, &dwSize, NULL);

 // turn off LED
 ledStatus = LED_OFF;
 WriteFile(hPort, &ledStatus, 1, &dwSize, NULL);
 }

 // close port
 CloseHandle(hPort);

 // destroy event
 CloseHandle(hPwrOffEvent);

 SetEvent(hThreadEvent);

 // destroy event
 CloseHandle(hThreadEvent);

 return 0;
}

Detailed Tests of CE 3.0
While the Graphics Master runs all OS variations, we used 3.0 here as a base case to
outline the detail of the methodology. We set up the apparatus with the controller
comfortably monitoring and passing on square wave inputs at a frequency of 5000 Hz,
(200 micro second period peak to peak for pulses) with pulse generator set at 20% duty
cycle (each pulse 40 microseconds wide). The frequency of 5000Hz was chosen to be
comfortably less than saturation, but still more than expected of a 32 bit Graphic system
in real-world applications.

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 8 6/3/2002
Applied Data Systems, Inc.

The input pulse signal was input as channel 1(bottom trace) to the memory scope, acting
as the trigger. The Interrupt-linked ISR_TEST was channel 2 (middle trace), and the
windows event linked APP_TEST was channel 3 (upper trace).

Figure 5 - 3.0 Latency, unloaded scenario

As you can see, the interrupt linked ISR_TEST output lagged the input signal by about
2.5 microseconds. The windows-event linked APP_TEST output lagged the interrupt
input by 16 microseconds.

Most readers will note these numbers are far inside any specification limits typically
discussed by Microsoft or most professionals. To help quantify this performance in
meaningful terms, consider the latency (propagation delay) in cable is about 1
nanosecond per foot. This means the ISR_TEST response occurred as if the entire
Graphics Master (StrongARM+CE) system were replaced with a 2,500 foot cable. Most
real world designs do not find determinism a meaningful problem in a spool of cable.
Alternately, consider that the lions share of real-time processes occur outside the period
of one millisecond, for example the specification of industrial SOE recorders is 1ms
resolution +/- 1ms accuracy. If you are viewing the above chart on normal paper, the
one-millisecond mark is about 15 feet to your right. CE 3.0 is clearly, in most
environments, well inside the time window used to discuss determinism.

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 9 6/3/2002
Applied Data Systems, Inc.

Since determinism is a ‘statistical’ property, we needed to measure this latency over a
extended number of samples to quantify “Jitter” or the variation in latency. It would have
been nice to make a statistical distribution plot of the start of rise time and the start of
completion time, but we did not have suitable equipment,. Nevertheless, we were able to
make a closely related measurement.

The scope used for testing has a feature to average samples, giving us a good way to
measure this Jitter. The “rise time” of the controller output is sharp, only a few
nanoseconds, so as the pulse would jitter back and forth, an average would be created for
the last group of samples. The average for two pulses, jittered back and forth, would be a
‘one step’ stairway to the top of the pulse. For three staggered pulses, two steps and so
on. For the 128 samples offered by the scope, this gave the averaged output a smooth
‘slope’ up to a flat-topped peak. The time duration of the ‘slope’ is taken as the Jitter.

Figure 6 Jitter 3.0 System under no load

Here we can see that 95% or more of the “jitter” or variation in the latency tends to occur
within half a division, or about 2.5 microseconds. This is essentially the same for both
the ISR_TEST and APP_TEST outputs of the unloaded system. In this test, we do,
however, see a few pixel high ‘step’ trailing each of these outputs, suggesting that there
were some outliers, which later we measure under load.

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 10 6/3/2002
Applied Data Systems, Inc.

This system in this test was ‘unloaded’. No programs except ISR_TEST and APP_TEST
were running, and the system was not being driven to saturation. The realistic case
would include some background load for graphics, algorithmic processing,
communalizations, etc. To simulate this load, we use the Polygons test program shipped
with Windows CE and running at top priority. This program presents intensive integer
compute demands on the CPU and contends with APP_TEST for processing at the
highest priority level. In our experience, Polygons is a far more intensive load than most
Graphics MMI/SCADA applications. The nature of the load it presents on the CPU in a
StrongARM system is largely integer arithmetic, much like a control program. In short,
Polygons is on balance quite a realistic load.

Repeating the first test, Figure 1, we see essentially no change for the system under load.

Figure 6 - 3.0 System Under Load

This is the same chart as Figure 5, this time with the system under load from Polygons
and with the time axis compressed X10 to 25 microseconds per division. We would
expect the ISR_TEST to be the same (it is) because it runs at OS/Interrupt priority. The
APP_TEST, however, now contend at parity priority with Polygons so it shows a much
higher latency, about 133 microseconds, depending on how the OS spreads CPU cycles
between two identically prioritized tasks.

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 11 6/3/2002
Applied Data Systems, Inc.

The next test is to measure the average response under load.

Figure 6 3.0 Average Response E 3.0 Under Load

Here we can see the ISR_TEST, linked to the interrupt, is still very deterministic with
respect to when it starts, even under load. Its completion time, however, becomes more
varied, as expected. Both IRS_TEST and APP_TEST are deterministic as to when they
signal output “on”, but they are dependant on code run time as to when they shut output
“off”.

The response to the Windows-Event scheduled APP_TEST is in some ways the opposite.
The OS is very deterministic in ensuring the APP_TEST will run within the 133,
microsecond window even contending with Polygons, but a measurable number of
executions occur much earlier, at peaks about 15 microseconds and 30 microseconds. So,
we should understand that with for Windows CE 3.0, determinism of an interrupt- linked
process is best interpreted with respect to how quickly they start. Determinism of
windows-event scheduled processes is best interpreted with respect to when they must
start, with the time interval understood more as a ‘back’ wall.

Apart from the average, an analysis of determinism needs to understand the behavior of
outliers, the small number or responses (early or late) that are far from the mean. To

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 12 6/3/2002
Applied Data Systems, Inc.

measure theses outliers, we use the persistence feature of the scope which records and
overwrites ALL traces for a total many hundreds of thousands of traces. The result does
show outlier behavior:

Figure 7 CE 3.0 Under Load, thousands of samples

Here we can see the deterministic behavior measured over many tens of thousands of
cycles. The dark line is the last recorded response. Here we can see that all interrupt-
linked processes were complete within about 50 microseconds and all windows event
linked processes were complete within about 125 microseconds.

Maximum Interrupt Frequency and Saturation Frequency for Three Systems
After the above detailed investigation of CE 3.0, we can now compare the Maximum
Frequency and Saturation Frequency of all three CE Versions

In the manner of Dupre and Barcos, the test is set up to measure the maximum frequency
(MF) that the controller can accept input and faithfully reproduce output. This is
measured separately for both ISR_TEST linked to interrupts and APP_TEST linked to
windows events.

We also consider the ‘saturation frequency’ (SF) of the controller an important variable,
indicating when processing real time inputs preempts other programs in the system.

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 13 6/3/2002
Applied Data Systems, Inc.

Variable Name Definition

MF-ISR Max Frequency The input frequency at which the output of a ISR-
linked process is seen to miss (any) input pulses

MF-ISR Max Frequency The input frequency at which the output windows-
event linked profess is seen to miss (any) input
pulses

SF Saturation
Frequency

The input frequency at which the system can no
longer run Polygons

This test is the place where we will introduce a direct comparison of the three version for
the CE operating systems because is shows so clearly the effect of the real-time recode
between 2.12 and 3.0.

Figure 8 Dupre / Barcos Test Results
 MF-ISR

interrupt
linked

MF-APP
windows

linked

SF
Polygons

Dies

Comment

CE 2.12 20Hz 19 Hz Notice! 20 Hz NOT kHz!
CE 2.12 Loaded 20Hz 19 Hz N/A* Polygons never stopped
CE 3.0 127 KHz 28 kHz
CE 3.0 Loaded 127 KHz 15 kHz 85 kHz
CE.NET 47 kHz 6.1 kHz
CE.NET Loaded 47 kHz 6 kHz 40 kHz

Here it becomes very clear that CE 2.12 was a very different animal before it went into its
cocoon and emerged as some sort of super sonic 3.0 butterfly. CE 2.12 drops off the end’
of this test at frequency of only 20 cycles per second, corresponding to the system time
clock set, in this case, at a 50 ms ‘tic’. Outside this load rate CE 2.12 behaves quite
nicely, but inside this window it is non responsive. In short, a mixed choice for real time
processing.

CE 3.0 however is another matter. We were not expecting anything like this interrupt-
linked performance. We were watching a full graphic system servicing interrupts
comfortably above 100 kHz, and even running background graphics at 80 kHz. If we had
shut off the APP-TEST routine, it doubtless would have reached even higher frequencies.

When we placed the unit on a scope, we could see that that system continued to behave
completely determinately until the frequency increased to the point that the ISR did not
complete before the next ISR (on the same interrupt line) repeated. In other words, it was
real time to the point that it was processing interrupts just about as fast as the CPU could
compute. All this time the system was processing APP TEST and servicing other real
time processes like the system clock and memory refresh. It is also notable that the load
from Polygons had no effect on the interrupt linked processing at all; the system comply
preempted this background application.

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 14 6/3/2002
Applied Data Systems, Inc.

CE.NET is still very agile, even though it carries a lot more baggage in terms of network
support and graphics- the perennial bug-bear of real time systems. CE.NET serviced
interrupts right up to 47 kHz . While not exactly a threat to the AM band on your radio,
this would have been a useful frequency for Marconi. For the vast range of events that
are associated with electrical or mechanical devices, a frequency of 47 kHz,
corresponding to a period of 20 microseconds, should be quite sufficient.

What is notable, and actually very positive with respect to the real time performance of
CE.NET, is the way the maximum frequency of the windows event linked APP_TEST
changed under background load. We can see that for CE.NET, the MF changed only
about 2% when Polygons was running. In CE 3.0 MF_APP changed more than 50% as a
result of backgrounds load. This means that for the form of real time programming most
often used (windows event linked tasks) CE.NET is more deterministic than CE 3.0.
Later, we will see the CE.NET situation with Latency and Jitter was even better.

This improvement is because some changes were made to the CE.NET interrupt handling
to better arbitrate between two processes sharing the same priority- in this case
APP_TEST and Polygons. This code seems to work very well to improve the
repeatability and determinism of the system. We expect it is the presence of this
additional logic that slows the maximum frequency of the interrupt paced system. If so,
the trade-off is probably worth it. There probably are not too many processes that require
a performance window between the ~10 microsecond performance of 3.0 and the ~20
microsecond performance of CE.NET.

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 15 6/3/2002
Applied Data Systems, Inc.

Graphic Comparison, Three Systems.
Here we condense the measurements onto a single chart grid to facilitate comparison of
the three OS’s that were run on the Graphics Master. All systems were running
polygons. Note the horizontal axis is 25 microseconds per division.

Figure 9 CE 2.12 Overall Performance

In this figure we overlay the average (dark black trace) the last (gray trace) and the
montage of tens of thousands of traces (gray area), which catches the outliers. This is a
‘loaded’ system with Polygons running while the test was done. In this case, the test was
run at a leisurely 19Hz because of the low saturation rate of CE 2.12.

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 16 6/3/2002
Applied Data Systems, Inc.

Figure 9 CE 3.0 Overall Performance under Load

This is the response of a 3.0 system, again under load, but this time managing quite well
at 5000 Hz. Notice the interesting response of the event- linked task, sometimes ‘beating
polygons to the CPU’ and running just 10 microseconds after interrupt, the rest of the
time waiting for polygons to finish and running about 100 microseconds after interrupt.

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 17 6/3/2002
Applied Data Systems, Inc.

Figure 10 CE.NET Overall performance under load

Here we see CE.NET under load. We notice that both the interrupt linked ISR_TEST
and the windows event linked APP_TEST are more tightly defined, more deterministic in
response. While almost as quick as CE 3.0, CE.NET is a little bit more predictable,
especially for the APP_TEST under load.

Finally we can summarize several charts in a single table

Figure 11 Latency and Jitter; three Operating Systems
 ISR Start (µs) APP Start (µs)
 Max Min Jitter Latency Max Min Jitter Latency

CE 2.12 ** 6 2.6 3.4 3 162 51 111 61
CE 2.12** Loaded 11 3.9 7.1 4.8 201 117 84 135
CE 3.0 5.2 1.4 3.8 2.5 17.6 14.4 3.2 21
CE 3.0 Loaded 7 2 5 5 133 16 117 71
CE.NET 5 2 3 3 170 24 146 47
CE.NET Loaded 12.2 2.8 9.4 6.3 125 46 79 53

We think the place most engineers should focus is the performance of the ‘loaded’
system. Whether loaded by graphics, as in this case, or loaded with some sort of
control/optimization algorithm, real time in a CE system will usually mean real time in a
system also performing other tasks. Conversely, very few devices would invest a 32 bit

Benchmarking Real-time Determinism in Windows CE

Copyright 2002 Page 18 6/3/2002
Applied Data Systems, Inc.

CPU, much less a full multi-tasking OS, in a single function device. In this measure,
performance under load, CE.NET comes out very well.

Under load, the system actually becomes MORE deterministic. The “Jitter” on the
APP_TEST actually reduces, not only to less than a loaded 3.0 system, but less than a
CE.NET system under no load!! The actual Latency numbers are also quite good, with
an interrupt linked response starting 6.3 microseconds after interrupt, and a windows
even linked response starting only 53 microseconds after interrupt. Again, we point out
this is an early build of the BSP for this system; we expect some improvement over the
coming months.

Summary and Recommendations
We were very pleased with the real time response of CE 3.0 and CE.NET on the Graphics
Master platform. While for certain tests CE 3.0 seemed to have an edge, we think that for
the realistic cases- Windows™ events linked tasks on loaded systems- CE.NET is the
clear choice. We also think the series of tests give a good general guideline for CE
application to real time process. If the time intervals are measured in milliseconds, don’t
analyze too deeply, you are probably OK. If the time intervals are measured in tens to
hundreds of microseconds, think about it and perhaps test your target system and BSP. If
time intervals are single-digit microseconds, test carefully and consider hardware-based
interrupt handling. If needed, optimizing the Graphics Master for interrupt handling
would also be of tremendous value.

This document reflects the opinions of the authors and specification of Applied Data
Systems products referenced is representative of certain product configurations at a
certain point in time. These specification and measurements should not be construed as
general specifications of the products and services of Applied Data Systems. This
Document is copyright by Applied Data Systems, Inc. and any use of this document is
subject to approval by Applied Data Systems.

