

©2002 Applied Data Systems, Inc.
Document WP4438A

1

Profiling FlashFX® Disk Performance
Christopher Tacke, eMVP

Windows CE Product Manager, Applied Data Systems
Columbia, Maryland

April 23, 2002

Abstract

With embedded systems, just like most any information processing system, saving data is
an important and integral function. With the constraints and expectations of real-time
performance put on embedded systems, time requirements for data writing can be critical,
and since persistent (flash) RAM is becoming such a commonplace data medium, it is
important to determine the expected performance characteristics of the medium.

In this paper I profile the write performance of the Datalight FlashFX flash media
manager (version 4.08) by creating and opening a single file on the flash disk and
repeatedly adding a 256 byte block of data to that file until the disk was full. The elapsed
time was recorded for the write operation on each block.

An analysis of the data shows that the execution time of write operations not requiring
garbage collection does not seem to significantly increase as the disk becomes full.
Analysis did, however, show that as the disk becomes more full, garbage collection has a
doubly negative effect on performance by both increasing the time required to execute
the garbage collection and increasing the frequency of garbage collection.

Introduction

Datalight’s FlashFX Performance Characteristics1 white paper provides a good
introduction to how their FlashFX flash media manager’s uses and is impacted by
garbage collection.

Flash memory cannot simply be written to, but instead the target write area must first be
erased, therefore write performance is directly affected by the erase performance. During
normal write operations, garbage collections make space for the new data to be written
and these garbage collections
result in an alternating
fast/slow performance curve
for the flash disk.

According to the Datalight
white paper, flash disk
performance degrades as the
amount of disk used increases,
with the highest degradation
rate being when less than 25%
of the flash disk is in use.

Figure 1 – The Datalight Performance Degradation Curve

©2002 Applied Data Systems, Inc.
Document WP4438A

2

Figure 1 shows the performance degradation curve presented by Datalight.

While informative, the Datalight white paper does not quantify the degradations. The
purpose of this paper is as an extension to the Datalight paper, providing actual collected
data to quantify the performance degradation that flash disk users can expect.

Data Collection

Data collection was done using an Applied Data Systems’ Graphics Master™
development system running Windows CE.NET. The Graphics Master™ used had
32MB of on-board flash media logically partitioned so that a 4MB flash disk was
available through the FlashFX media manager to the test application.

A single-threaded application was written that created a single file on the flash disk and
repeatedly appended 256 byte blocks of data to the file until the flash disk was full. With
each write operation, the elapsed time was calculated and output through the device’s
debug port so that it could be collected and analyzed.

The application code, trimmed of error checking for clarity, can be seen in Listing 1

Listing 1 – Application Code

#define FILE_SIZE 256
#define TEST_FILE_NAME T("\\FlashFX Disk\\Flash.Test")

int WINAPI WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPTSTR lpCmdLine,
 int nCmdShow)
{
 ULARGE_INTEGER freeSpace;
 ULARGE_INTEGER totalSpace;
 short iterations;
 long elapsed_time;
 HANDLE hFile;
 BYTE *outBuffer;
 DWORD bytesWritten;

 // determine # of blocks to write
 GetDiskFreeSpaceEx(_T("\\FlashFX Disk"), &freeSpace, &totalSpace, NULL);

 DEBUGMSG(TRUE, (_T("%i FlashFX bytes free\r\n"), freeSpace));

 iterations = (short)(freeSpace.QuadPart / FILE_SIZE);

 DEBUGMSG(TRUE, (_T("Writing %i "), iterations));
 DEBUGMSG(TRUE, (_T("%i byte blocks\r\n"), FILE_SIZE));

 // create output file
 hFile = CreateFile(TEST_FILE_NAME, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS,
 FILE_ATTRIBUTE_NORMAL, 0);

 // create data block for writing
 outBuffer = (BYTE *)LocalAlloc(LPTR, FILE_SIZE);

 for(int i = 0 ; i < iterations ; i++)
 {
 // begin timing
 elapsed_time = GetTickCount();

©2002 Applied Data Systems, Inc.
Document WP4438A

3

 // write data block
 WriteFile(hFile, outBuffer, FILE_SIZE, &bytesWritten, NULL);

 // calculate ET
 elapsed_time = GetTickCount() - elapsed_time;

 // output ET
 DEBUGMSG(TRUE, (_T("%i ticks\r\n"), elapsed_time));
 }

 // close file
 CloseHandle(hFile);

 DEBUGMSG(TRUE, (_T("Cleaning up...\r\n")));

 // delete file and free memory allocation
 DeleteFile(_T("\\FlashFX Disk\\Flash.Test"));
 LocalFree(outBuffer);

 DEBUGMSG(TRUE, (_T("Testing complete.\r\n")));

 return 0;
}

Results

In the resulting data set it was very easy to distinguish between data points in which
garbage collection was performed and those in which it was not. The data split into two
groups, one with 555 data points that had an average elapsed time of 1797 milliseconds
(garbage collection occurred) and a second with 18,117 data points that had an average
elapsed time of only 5.5 milliseconds (garbage collection did not occur).

The first data that I looked at was the periodicity of garbage collections, or the number of
writes that the application performs between garbage collections. The periodicity started
at approximately 200 writes between garbage collections when the flash disk was empty
and decreased to approximately 25 writes between garbage collections when the flash
disk was about 20% full. At that point the periodicity plateaued at a rate of 40 writes
between garbage collections, with a significant number of data points ranging from as
low as 3 to a maximum of 40.

Figure 2 shows the number of writes between garbage collections as a function of the
percentage of filled flash disk space.

©2002 Applied Data Systems, Inc.
Document WP4438A

4

Figure 2 - Periodicity of Garbage Collection

0

50

100

150

200

250

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% of FlashFX Disk Full

W
ri

te
s

B
et

w
ee

n
 G

ar
b

ag
e

C
o

lle
ct

io
n

s

Next I looked at the elapsed time of the write functions that required garbage collection.
The elapsed time started at approximately 1300 milliseconds when the flash disk was
empty and gradually increased to approximately 1800 milliseconds when the flash disk
was about 20% full.

At that point the elapsed time seemed to plateau at about 1800 milliseconds, but there
were a significant number of outliers giving elapsed time values ranging from about 1200
milliseconds to over 3700 milliseconds.

Figure 3 shows the elapsed time of writes with garbage collections as a function of the
percentage of filled flash disk space.

©2002 Applied Data Systems, Inc.
Document WP4438A

5

Figure 3 - Elapsed Times for Garbage Collection

0

500

1000

1500

2000

2500

3000

3500

4000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% of FlashFX Disk Full

T
im

e
re

q
u

ir
ed

 fo
r

G
ar

b
ag

e
C

o
lle

ct
io

n
 (m

s)

Since it was easy to distinguish the data points where garbage collection did not occur
from those where it did, I extracted all non-garbage collection data points to get a profile
of the actual write performance of the flash disk itself.

A majority (89.5%) of the data points determined to be non-garbage collection points had
elapsed times less than 15 milliseconds with a moving average ranging from 4 to 7
milliseconds. The remaining 10% of the data points lie in “clusters” with elapsed times
between 15 and 50 milliseconds.

Figure 4 shows the elapsed time of non-garbage collecting writes as a function of the
percentage of filled flash disk space for the 256 byte blocks.

©2002 Applied Data Systems, Inc.
Document WP4438A

6

Figure 4 - Elapsed Time to write 256 bytes

0

10

20

30

40

50

60

70

80

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% of FlashFX Disk Full

T
im

e
to

 W
ri

te
 2

56
 b

yt
e

B
lo

ck
 (

m
s)

Interestingly, running the same tests with block sizes of 2048 bytes instead of 256 bytes
eliminates all of the very low end data points (probably due to the time required to
physically write the data) but yields nearly identical data “clusters” as the 256 byte data.

Figure 5 shows the elapsed time of non-garbage collecting writes as a function of the
percentage of filled flash disk space for the 2048 byte blocks.

©2002 Applied Data Systems, Inc.
Document WP4438A

7

Figure 5 - Elapsed Time to write 2048 bytes

0

10

20

30

40

50

60

70

80

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% of FlashFX Disk Full

T
im

e
to

 W
ri

te
 2

04
8

b
yt

e
B

lo
ck

Conclusion

When writing applications or devices that will be using flash media, it is extremely
important to be aware of the performance implications of how data is written. While
writing to the flash disk when it is less that 25% full can produce some fast values, the
potential for long write latencies is high. Additionally, writing data to the flash disk has
two negative performance effects. First, it increases the time required to do garbage
collection and second it increases the frequency at which garbage collection occurs.

Once approximately 25% of the flash disk is full, performance of the flash disk seems to
stabilize and additional data on the disk seems to have little or no effect on performance.
Still, once 25% of the disk is in use, write latencies of over three (3) seconds are not
unusual.

There is potential to mitigate this performance degradation to a small degree by calling
for manual garbage collection at times when the flash disk is idle, but there are a few
issues that may arise:

1. If the OS has mounted the flash disk, getting an application reference to the flash
disk to make the garbage collection call may be difficult or impossible.

2. Garbage collection will still take the same amount of time and if the application
needs to perform write functions on intervals less than the time required to do
garbage collection, application performance will still be impacted.

©2002 Applied Data Systems, Inc.
Document WP4438A

8

3. Garbage collection may still need to be performed before a write even if it was
called for manually, so write performance times still cannot be guaranteed.

While flash media is good for persistent storage, its write performance must be taken into
account when designing an application or system. If guaranteed write times are required,
such as when doing emergency data dumps during a power loss, then alternative data
storage or power management techniques must be considered.

References

1. FlashFX® Performance Characteristics, Datalight, Inc. white paper,
http://www.datalight.com/wp-flashfx-perform.htm

